Noticias Actualidad en procesos industriales

Dele visibilidad a su trayectoria académica

Participe en la convocatoria de trabajos inéditos de Virtual Pro.

Publicar Ahora

2017-05-22La naturaleza ofrece nuevas claves para fabricar materiales a medida

SINC |Un mineral de la familia de las sulfosales ha revelado la solución a varios de los problemas actuales que plantea la fabricación de materiales de nueva generación.

El trabajo, liderado desde la Universidad Autónoma de Madrid y el instituto IMDEA Nanociencia, supone un hito en la investigación en materiales bidimensionales y abre la puerta a un nuevo campo de investigación: las heteroestructuras naturales. >

En 2004, André Geim y Konstantin Novoselov demostraron que era posible separar capas de grafito de espesor de un solo átomo y otros materiales bidimensionales con la única ayuda de cinta adhesiva. Desde entonces, la comunidad científica persigue la posibilidad de fabricar materiales a medida mediante el apilamiento de distintos materiales ultradelgados, con el objetivo de desarrollar una nueva generación de tecnología flexible y transparente. Estos son los materiales que hoy se conocen como ‘heteroestructuras de van der Waals’.

Hasta la fecha, el procedimiento para fabricar heteroestructuras ha sido totalmente artesanal, lo que conlleva varias dificultades: controlar que las capas apiladas estén perfectamente alineadas (hasta el último átomo), o evitar que residuos atmosféricos queden atrapados durante el proceso de apilamiento, por ejemplo.

Ahora, investigadores de la Universidad Autónoma de Madrid (UAM) y el instituto IMDEA Nanociencia, en colaboración con el sincrotrón español ALBA y la Universidad Tecnológica de Delft (Países Bajos), han descubierto que la naturaleza fabrica mejores estructuras de van der Waals que los científicos en los laboratorios.

Concretamente, estos investigadores han encontrado que la franckeita, un mineral de la familia de las sulfosales conocido desde 1893, posee de manera natural una estructura similar a las heteroestructuras de van der Waals, con la ventaja de que el alineamiento es prácticamente perfecto y no hay residuos atrapados entre las capas.

“Una vez más confirmamos que la naturaleza va un paso por delante”, afirman los investigadores. Los resultados, publicados por Nature Communications, marcan un hito en la investigación en materiales bidimensionales y abren la puerta a un nuevo campo de investigación: las heteroestructuras naturales. ​

Aplicaciones tecnológicas

El trabajo también demuestra que es posible emplear procedimientos similares a los utilizados con el grafeno para aislar capas de pocos átomos de espesor, los cuales pueden ser utilizados para fabricar fotodetectores y celdas solares capaces de operar en el infrarrojo. Estos son dispositivos muy interesantes para el desarrollo de aplicaciones tecnológicas, como cámaras de visión nocturna o sensores para las telecomunicaciones.

Además, el trabajo demuestra que la franckeita se puede exfoliar químicamente, obteniendo suspensiones del material en disolvente que permiten fabricar láminas ultradelgadas a gran escala. “Estos métodos eran incompatibles con los procedimientos artesanales empleados hasta la fecha, que solamente permiten ensamblar heteroestructuras capa a capa”, afirman los autores.

“El haber aislado la franckeita como un material de unos pocos átomos de espesor supone un hito en la investigación en materiales bidimensionales, ya que, desde ahora, es posible obtener heteroestructuras de van der Waals de la propia naturaleza, evitando así su dificultosa síntesis”, agregan.

Referencia bibliográfica:

"Franckeite as a naturally occurring van der Waals heterostructure", Aday J. Molina-Mendoza, Emerson Giovanelli, Wendel S. Paz, Miguel Angel Niño, Joshua O. Island, Charalambos Evangeli, Lucía Aballe, Michael Foerster, Herre S. J. van der Zant, Gabino Rubio-Bollinger, Nicolás Agraït, J. J. Palacios, Emilio M. Pérez & Andres Castellanos-Gomez. Nature Communications. DOI:10.1038/ncomms14409.


2024-03-27
Diseñan factorías bacterianas para producir bioplásticos a partir de plásticos convencionales

Un estudio del CSIC diseña cepas de la bacteria ‘Pseudomonas putida’ capaces de utilizar residuos plásticos como nutrientes para transformarlos en bioplásticos degradables o compostables

2024-03-22
Corriente eléctrica en el agua para descontaminarla de mercurio

La contaminación de agua por mercurio y otros metales pesados –como el plomo, común en zonas mineras– la deja no consumible, pone en riesgo la salud de todo ser vivo y aumenta la posibilidad de deforestación en las riberas. Una investigación adelantada en el municipio de El Bagre (Antioquia), con agua del río Nechí, mostró la eficiencia –entre 99,64 y 99,77 %– de un método de remoción de mercurio empleando electrodos de aluminio. Este método “separa” el metal del agua, como si se tratara de aceite, dejándola lista para consumo humano.

2024-03-21
Validan un método más barato y eficiente para obtener antioxidantes de hojas de árboles

Un equipo de investigación de la Universidad de Huelva ha optimizado un sistema de ultrasonido para la extracción de compuestos beneficiosos para la salud a partir de residuos agroforestales. De esta manera, se podrán incluir como complementos nutricionales y farmacéuticos de una manera más asequible.

2024-03-20
Hemos descubierto que los diamantes pueden compactarse aún más. El resultado es un material mucho más duro

Desde hace más de 200 años el diamante ha estado en la cumbre de la escala de Mohs, la escala que mide la dureza de los minerales. Los diamantes son más que una piedra brillante, son el epítome de la dureza. Ahora puede que contemos con un mineral aún más duro, aunque por el momento, tan solo en la teoría.

2024-03-19
Las anémonas marinas guardan el secreto para degradar microplásticos

Una enzima artificial basada en una proteína producida por una anémona que podemos encontrar en prácticamente cualquier costa española puede degradar el PET.

2024-03-14
Crean materiales similares al grafeno con biomasa y arcilla para impulsar la transición energética

El ICMM-CSIC consigue optimizar la creación de materiales grafíticos, semejantes al grafeno, con aplicaciones clave para una energía sostenible como el almacenamiento de hidrógeno.