Noticias Actualidad en procesos industriales

Dele visibilidad a su trayectoria académica

Participe en la convocatoria de trabajos inéditos de Virtual Pro.

Publicar Ahora

2017-10-05Nobel de Química para los científicos que retratan las moléculas de la vida

SINC |Los científicos Jacques Dubochet, Joachim Frank y Richard Henderson son los ganadores del Premio Nobel de Química 2017 por el desarrollo de la criomicroscopía electrónica, que permite visualizar y estudiar biomoléculas en alta resolución. Se trata de un avance trascendental en bioquímica, que ayudará a comprender mejor la química de los seres vivos y desarrollar nuevos fármacos.

Pronto se podrán obtener imágenes a resolución atómica de la compleja maquinaria de la vida gracias a los ganadores del Premio Nobel de Química de este año: Jacques Dubochet, de la Universidad de Lausana (Suiza); Joachim Frank, de la Universidad de Columbia (EE UU); y Richard Henderson, del MRC Laboratory of Molecular Biology de Cambridge (Reino Unido).

La Academia Sueca de las Ciencias se lo ha otorgado hoy "por el desarrollo de la criomicroscopía electrónica, que permite determinar en alta resolución las estructuras de biomoléculas en solución". Este método, que simplifica y mejora la obtención de imágenes de las moléculas de la vida, ha llevado a la bioquímica a una nueva era.

Las imágenes son claves para entender cualquier proceso. Los descubrimientos científicos a menudo se basan en poder visualizar bien los objetos que son invisibles al ojo humano. Sin embargo, hasta la fecha los "mapas" bioquímicos se han llenado de espacios en blanco porque la tecnología disponible tenía dificultades para generar imágenes de gran parte de la maquinaria molecular de la vida.

Pero ahora la llamada criomicroscopia electrónica lo cambia todo. Los científicos pueden congelar las biomoléculas en pleno movimiento y visualizar procesos que nunca antes se habían visto, lo que es decisivo tanto para la comprensión básica de la química de la vida como para el desarrollo de productos farmacéuticos.

Ejemplos de estructuras atómicas de biomoléculas conseguidas con criomicroscopia electrónica : a) proteína que controla los ritmos circadianos, b) sensor auditivo y c) virus del Zika. / The Royal Swedish Academy of Sciences

Durante mucho tiempo se pensó que los microscopios electrónicos solo eran adecuados para captar imágenes de materia muerta, ya que el poderoso haz de electrones que emplea destruye el material biológico. Pero en 1990, el escocés Richard Henderson (Edimburgo, 1945) logró por fin utilizar uno de estos microscopios para generar una imagen tridimensional de una proteína a resolución atómica. Este avance demostró el potencial de la técnica.

Fusión de imágenes difusas 2D para crear una nítida 3D

Por su parte, el químico alemán Joachim Frank (Siegen, 1940) hizo que esta tecnología se pudiera aplicar de forma general. Entre 1975 y 1986 desarrolló un método de procesamiento de imágenes en el que se analizan las fotografías bidimensionales difusas que toma el microscopio electrónico y después se fusionan para revelar una estructura tridimensional definida.

Y la aportación del suizo Jacques Dubochet (Aigle, 1942) fue el uso del agua en la microscopía electrónica. El agua líquida se evapora en el vacío que se genera dentro de estos avanzados microscopios, lo que hace que las biomoléculas colapsen. Sin embargo, a principios de los años ochenta, Dubochet consiguió vitrificar el agua: la enfrió con tanta rapidez que se solidificó en su forma líquida alrededor de una muestra biológica, permitiendo así que las biomoléculas conserven su forma natural, incluso en el vacío.

Después de estos descubrimientos, se han optimizado todas las piezas del microscopio electrónico. La resolución atómica que ansiaban los científicos se alcanzó en 2013, y ahora se pueden producir de forma rutinaria las estructuras tridimensionales de las biomoléculas.

En los últimos años, la literatura científica se ha llenado de imágenes de todo tipo, desde proteínas que causan resistencia a antibióticos hasta la superficie del virus Zika. Como señala la Academia Sueca de las Ciencias en un comunicado, "la bioquímica se enfrenta ahora a un desarrollo explosivo, pero está preparada para ese futuro emocionante".

 

Evolución de la resolución de una biomolécula desde antes de 2013 a la actualidad. / Martin Högbom/The Royal Swedish Academy of Sciences

Escrito originalmente para SINC.

Fuente Nobel Prize 

 

 


2024-03-27
Diseñan factorías bacterianas para producir bioplásticos a partir de plásticos convencionales

Un estudio del CSIC diseña cepas de la bacteria ‘Pseudomonas putida’ capaces de utilizar residuos plásticos como nutrientes para transformarlos en bioplásticos degradables o compostables

2024-03-22
Corriente eléctrica en el agua para descontaminarla de mercurio

La contaminación de agua por mercurio y otros metales pesados –como el plomo, común en zonas mineras– la deja no consumible, pone en riesgo la salud de todo ser vivo y aumenta la posibilidad de deforestación en las riberas. Una investigación adelantada en el municipio de El Bagre (Antioquia), con agua del río Nechí, mostró la eficiencia –entre 99,64 y 99,77 %– de un método de remoción de mercurio empleando electrodos de aluminio. Este método “separa” el metal del agua, como si se tratara de aceite, dejándola lista para consumo humano.

2024-03-21
Validan un método más barato y eficiente para obtener antioxidantes de hojas de árboles

Un equipo de investigación de la Universidad de Huelva ha optimizado un sistema de ultrasonido para la extracción de compuestos beneficiosos para la salud a partir de residuos agroforestales. De esta manera, se podrán incluir como complementos nutricionales y farmacéuticos de una manera más asequible.

2024-03-20
Hemos descubierto que los diamantes pueden compactarse aún más. El resultado es un material mucho más duro

Desde hace más de 200 años el diamante ha estado en la cumbre de la escala de Mohs, la escala que mide la dureza de los minerales. Los diamantes son más que una piedra brillante, son el epítome de la dureza. Ahora puede que contemos con un mineral aún más duro, aunque por el momento, tan solo en la teoría.

2024-03-19
Las anémonas marinas guardan el secreto para degradar microplásticos

Una enzima artificial basada en una proteína producida por una anémona que podemos encontrar en prácticamente cualquier costa española puede degradar el PET.

2024-03-14
Crean materiales similares al grafeno con biomasa y arcilla para impulsar la transición energética

El ICMM-CSIC consigue optimizar la creación de materiales grafíticos, semejantes al grafeno, con aplicaciones clave para una energía sostenible como el almacenamiento de hidrógeno.