Noticias Actualidad en procesos industriales

Dele visibilidad a su trayectoria académica

Participe en la convocatoria de trabajos inéditos de Virtual Pro.

Publicar Ahora

2017-10-12Descubren el material que más calor intercambia por radiación

SINC |Científicos españoles han descubierto que, si se realiza una red periódica de agujeros en silicio dopado, es posible obtener la transferencia de calor radiativa más alta hasta la fecha. Estos resultados representan un avance hacia una gestión térmica mucho más eficiente en dispositivos.

La transferencia de calor entre dos objetos se puede llevar a cabo por medio de tres mecanismos básicos: conducción, convección y radiación. El intercambio de calor por radiación es uno de los fenómenos más universales que existen y es, por ejemplo, el que hace posible que el Sol caliente a la Tierra.

En los últimos años se ha descubierto que cuando dos objetos están muy próximos la transferencia radiativa de calor puede aumentarse en órdenes de magnitud. Sin embargo, todavía no se conoce cuál es el límite máximo de energía que puede llegar a ser intercambiada por este mecanismo.

Ahora, físicos del Centro de Investigación de Física de la Materia Condensada (IFIMAC) de la Universidad Autónoma de Madrid (UAM), han mostrado que el silicio dopado, periódicamente perforado, intercambia más calor por radiación que ningún otro material propuesto hasta la fecha.

Los autores emplearon el denominado “formalismo de la matriz de scattering”, que hasta ahora no había podido ser utilizado para abordar este problema. Gracias a la correcta resolución de las ecuaciones de Maxwell en el contexto de la radiación térmica, los investigadores lograron analizar el material, dando un paso más en el conocimiento de los límites de la radiación térmica.

Además de ser importantes desde un punto de vista fundamental, estos resultados acercan el desarrollo de nuevas tecnologías térmicas, como las células termofotovoltaicas, la litografía térmica o el grabado magnético asistido por calor.

El trabajo, publicado en Physical Review Letters, lo firman Víctor Fernández Hurtado, Francisco José García Vidal y Juan Carlos Cuevas Rodríguez de la UAM, junto al investigador Shanhui Fan de la Universidad de Stanford.

Récord de transferencia radiativa

Hasta la fecha los materiales que más calor emiten en el campo cercano son los denominados dieléctricos polares, como el carburo de silicio o la sílice, sistemas que tienen una estructura atómica muy particular: son grandes emisores térmicos cuando la distancia entre ellos es muy pequeña (del orden de una micra o menos).

En su trabajo, los científicos utilizaron una estrategia diferente para explorar los límites de la radiación térmica. En vez de un material dieléctrico, emplearon un semiconductor como el silicio dopado para analizar teóricamente el intercambio de radiación.

“Aunque el silicio dopado no es un gran emisor térmico en estas escalas, intuíamos que sus propiedades emisoras debían mejorar al introducir una nanored periódica de agujeros en el material”, explican los autores.

La verificación de la hipótesis de su trabajo teórico demostró que el intercambio de calor entre dos sistemas formados por silicio dopado es extraordinario. “Supera en un factor tres a la energía transferida por radiación entre dieléctricos polares, que hasta ahora tenían el récord en la transferencia radiativa”, detallan.

Referencia bibliográfica: V. Fernández-Hurtado, F.J. García-Vidal, S. Fan and J. C. Cuevas. Enhancing near-field radiative heat transfer with Si-based metasurfaces. Physical Review Letters. Doi: 10.1103/PhysRevLett.118.203901


2024-04-19
El toque artístico a la transformación urbana sostenible

Tres ciudades europeas muestran cómo el arte y la cultura pueden contribuir a crear barrios bellos, sostenibles e inclusivos.

2024-04-19
Un estudio liderado por el CSIC halla una combinación de fármacos eficaz frente al SARS-CoV-2

La unión de ribavirina y remdesivir consigue eliminar de forma rápida el virus al inducir un exceso de mutaciones en su genoma que le impiden multiplicarse con eficacia.

2024-04-18
Patrones de nano y microplásticos para mejorar la evaluación de sus riesgos

La preocupación hacia los nano y microplásticos y su impacto en el medio ambiente y la salud de los organismos vivos ha aumentado considerablemente. Actualmente, no existe una metodología de análisis estandarizada para estudiar la presencia de estos, pero las autoridades ya comienzan a restringirlos. Además, existe un obstáculo clave que impide realizar las pruebas oportunas sobre los micro y nano materiales: la disponibilidad limitada de materiales caracterizados y trazables biológicamente. Por tanto, para poder continuar con esta línea de investigación es necesario disponer de partículas que sirvan de referencia, es decir, que conserven la naturaleza química del material y que tengan el tamaño de partícula adecuado.

2024-04-16
AIMPLAS avanza en nuevas tecnologías para la descarbonización y la transición energética de la industria y el transporte

AIMPLAS avanza en nuevas tecnologías para la descarbonización y la transición energética de la industria y el transporte, a través de dos proyectos de investigación y desarrollo financiados por el Instituto Valenciano de Competitividad e Innovación (IVACE+i) y los fondos FEDER.

2024-04-09
Una tecnología pionera recicla los residuos plásticos al final de su vida útil

El equipo del proyecto MMAtwo, financiado con fondos europeos, presentó una tecnología para procesar residuos de polimetacrilato de metilo y convertirlos en materiales utilizables en una segunda vida.

2024-04-09
Crean un hidrogel que permite cultivar células neurales para reparar lesiones medulares

El biomaterial desarrollado por el ICMM-CSIC se combina con campos magnéticos para crear una matriz que permitirá la colonización por células neurales de las zonas dañadas de la médula espinal.